4 research outputs found

    Intrusion Resilience Systems for Modern Vehicles

    Full text link
    Current vehicular Intrusion Detection and Prevention Systems either incur high false-positive rates or do not capture zero-day vulnerabilities, leading to safety-critical risks. In addition, prevention is limited to few primitive options like dropping network packets or extreme options, e.g., ECU Bus-off state. To fill this gap, we introduce the concept of vehicular Intrusion Resilience Systems (IRS) that ensures the resilience of critical applications despite assumed faults or zero-day attacks, as long as threat assumptions are met. IRS enables running a vehicular application in a replicated way, i.e., as a Replicated State Machine, over several ECUs, and then requiring the replicated processes to reach a form of Byzantine agreement before changing their local state. Our study rides the mutation of modern vehicular environments, which are closing the gap between simple and resource-constrained "real-time and embedded systems", and complex and powerful "information technology" ones. It shows that current vehicle (e.g., Zonal) architectures and networks are becoming plausible for such modular fault and intrusion tolerance solutions,deemed too heavy in the past. Our evaluation on a simulated Automotive Ethernet network running two state-of-the-art agreement protocols (Damysus and Hotstuff) shows that the achieved latency and throughout are feasible for many Automotive applications

    Practical Byzantine Reliable Broadcast on Partially Connected Networks

    Get PDF
    In this paper, we consider the Byzantine reliable broadcast problem on authenticated and partially connected networks. The state-of-the-art method to solve this problem consists in combining two algorithms from the literature. Handling asynchrony and faulty senders is typically done thanks to Gabriel Bracha’s authenticated double-echo broadcast protocol, which assumes an asynchronous fully connected network. Danny Dolev’s algorithm can then be used to provide reliable communications between processes in the global fault model, where up to f processes among N can be faulty in a communication network that is at least 2f+1-connected. Following recent works that showed how Dolev’s protocol can be made more practical thanks to several optimizations, we show that the state-of-the-art methods to solve our problem can be optimized thanks to layer-specific and cross-layer optimizations. Our simulations with the Omnet ++ network simulator show that these optimizations can be efficiently combined to decrease the total amount of information transmitted or the protocol’s latency (e.g., respectively, -25% and -50% with a 16B payload, N=31 and f=4) compared to the state-of-the-art combination of Bracha’s and Dolev’s protocols

    RepuCoin: Your Reputation is Your Power

    Get PDF
    Existing proof-of-work cryptocurrencies cannot tolerate attackers controlling more than 50% of the network’s computing power at any time, but assume that such a condition happening is “unlikely”. However, recent attack sophistication, e.g., where attackers can rent mining capacity to obtain a majority of computing power temporarily, render this assumption unrealistic. This paper proposes RepuCoin, the first system to provide guarantees even when more than 50% of the system’s computing power is temporarily dominated by an attacker. RepuCoin physically limits the rate of voting power growth of the entire system. In particular, RepuCoin defines a miner’s power by its ‘reputation’, as a function of its work integrated over the time of the entire blockchain, rather than through instantaneous computing power, which can be obtained relatively quickly and/or temporarily. As an example, after a single year of operation, RepuCoin can tolerate attacks compromising 51% of the network’s computing resources, even if such power stays maliciously seized for almost a whole year. Moreover, RepuCoin provides better resilience to known attacks, compared to existing proof-of-work systems, while achieving a high throughput of 10000 transactions per second (TPS)

    RepuCoin: Your Reputation Is Your Power

    No full text
    corecore